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Review from Last Time (1)

e Theory of probability tells us how often to expect a given
outcome if we know the underlying distribution that defines
the physical process

» Probability Density Function (pdf) f(xz;0): prob that x lies
between x and x + dx.

/_O:o f(z,0)dz =1

e Statistical methods tell us how to estimate true quantities
given a set of measurements
» Needs a model to define the pdf
» Statistical questions particle physicists ask:

What is our best estimate of a given parameter of our model
(or of a quantity that depends on the parameters of our
model)?

How precise is our estimate of that parameter?

Is the data consistent with our model?

What range of parameters 6; are allowed?

Can we distinguish between two models and choose which is
best?



Reminder: Log Likelihood

e To estimate parameter(s) 6, maximize the likelihood
e Usual technique to find maximum, set derivative equal to zero

e Easier to maximize than In £

dln L . T
=1
9 n
=0

o If several 6; can minimize with respect to each



Reminder: Connecting the Log Likelihood to the y?

n

L(x;0) =[] £

i=1

Reminder from previous page: For Gaussian case
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Compare this to
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e By inspection
x2=-2InL

In special (but important) case of Gaussian distributions, the
x? and In £ are related



ncertainty on the estimate of #

o x? calculates distance squared (in
units of o between measured
distribution and prediction of the
model ® Uncertainty on parameter 6

estimated by by find values where

—2In L increase by 1 unit

® From Gaussian case, can relate
—2In L to x?

® “Expect” x?/N ~ 1 if model is
good

~

® Probability that x*/N is larger
than a specific value as a function
of n:
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Goodness of Fit

e But estimates of parameters and the uncertainties only makes
sense if the model (pdf) used to determine the estimate is
correct

e It's not trivial to determine whether a model is good

o Generically, we call parameter determination “fitting” the data

e Determination of whether a model is correct means asking
whether the data is consistent with coming from the proposed
pdf

» This is called determining the “goodness of fit"



Test of Goodness of fit

® Measures distance (in uncertainty
space) between data and model

Z (y(z4) fm;del(xz))

Oy;

® Only works when uncertainties are
symmetric (Gaussian limit)

® |[nsensitive to whether data is above
or below the prediction

»> Not ideal for flagging
systematic deviations in shape

» Eg, for lower plot to the right,
X2 test gives less discrepancy
than you would notice by eye

® Use plot from page 5 to determine

probability that data would have a x?2

value at or larger than what we have
measured

Y =1(x) (dependent variable)

Model 1 (red) i+ v
Chi-squared - 16 1,0+ 10
3524572 +2.5240.0242.1240 4246 824482 P
-1248 L
4 68
T 48

- 25t
35 oo
P Mode 2 (blue)
P . T Chi-squared
li\; . 11242 5240 92+1 0240 9243 0241 2+1.02
11 2 -z27
3 7?
T
Model 2is a much better fit!

X (independent variable)

+ —
+
:
+
++++++ sufhd
M it
““““ e



® Test designed to determine

consistency between two datasets

Can either be two separate
measurements (eg do women and
men get the same number of colds
per year) or a measurement and a
prediction (eg real data and MC
data)

» Two samples not required to

have same number of events

No assumptions about the shape of
the pdfs, only require that the
statistical size of the samples be
“large enough”

For each sample, order data in

measured variable (z) and calculate
cumulative probability distribution

(cpd)

Shape Dependent Tests: Kolmogorov-Smirnov (K

Cumulative Probability

Measure difference between the two
cpd’s as function of x

Identify the largest difference D

Probability that the two distributions
come from the same fundamental pdf:

P(D) =23 =1%°(~1)/te~2/D*
J

see http://www.itl.nist.gov/div898/handbook/eda/section3/eda35g.htm for a good description



Constructing a model

To apply any statistical test, we need a model for the data

These models often complicated to construct.

Require knowledge of

» Underlying physics distribution
» How detector affects the measurement
» Backgrounds present in the sample

Kyle Cranmer in 2014 CERN summer school lectures calls this
“The Scientific Narrative”

» Describes 3 common narratives

e Monte Carlo Simulation narrative
e Effective modeling narrative
e Data driven narrative

» His slides are great. I've included them here.



The Monte Carlo Simulation narrative

Let's start with “the Monte Carlo simulation narrative”, which is
probably the most familiar

Kyle Cranmer (NYU) CERN Summer School, July 2013
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The simulation narrative > ?

Phase space Q) defines initial measure, sampled via Monte Carlo

b U10)P

(F1) i)

P — L'g/_\-“ P

do — |[M|?dQ

1 ) The language of the Standard Model is Quantum Field Theory

1 1
Loy = ZW#., S W IB""‘BW -

kit energies and self-inteactions of the gauge bosons
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kinetic energies and electroweak interactions of fermions
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W, Z,y,and Higgs masses and couplings
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The simulation narrative ) “?‘

2 a) Perturbation theory used to systematically approximate the theory.
b) splitting functions, Sudokov form factors, and hadronization models
c) all sampled via accept/reject Monte Carlo P(particles | partons)

e hard scattering

e partonic decays, e.g.
t — bW

® parton shower
evolution

e colour singlets
e colourless clusters
o cluster fission

Kyle Cranmer (NYU) CERN Summer School, July 2013



The simulation narrative ) ?

3 ) Next, the interaction of outgoing particles with the detector is simulated.
Detailed simulations of particle interactions with matter.
Accept/reject style Monte Carlo integration of very complicated function
P(detector readout | initial particles)
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The simulation narrative > “'f

4 From the simulated response of the detector, we run reconstruction
algorithms on the simulated data as if it were from real data. This allows us
to look at distribution of any observable that we can measure in data.
P( observable | detector readout)

ATLAS‘ ‘ e data I
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The Effective Model Narrative

In contrast, one can describe a distribution with some parametric function

>

» “we fit background to a polynomial”, exponential, ...

» While this is convenient and the fit may be good, the narrative is weak
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The Effective Model Narrative > -3‘7*;

In contrast, one can describe a distribution with some parametric function
» “we fit background to a polynomial”, exponential,
» While this is convenient and the fit may be good, the narrative is weak
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The Data-driven narrative oo @

Parmicie Puvsics T

Regions in the data with negligible signal §10fewE preliminary 3
expected are used as control samples 2 et ooyl aaiat:
. . 8 1 = r!i-hoson i

- simulated events are used to estimate 3 —
extrapolation coefficients - e'e Channel 7

- extrapolation coefficients may have
theoretical and experimental uncertainties 10
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Figure 10: Flow chart describing the four data samples used in the H — WW{*) — #v#v analysis. S.R
and C.R. stand for signal and control regions, respectively.
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Example of Data Driven Narrative

® CDF measurement of B™ lifetime
BY 5 oK", ¢ —ptp”
® Invariant mass of "~ K system shows peak at BT mass, plus flat

background

® Decay position determined from fit to utp~ K vertex (distance from
primary vertex)

e Difficult to model distribution of vertex position of background from MC

® |Instead use sidebands of mass distribution

® Unbinned likelihood fit to combined likelihood for signal and background

[ % - Daa - Data
\ — Data fit I Signal
#I I Sideband region (&) — Background
[} = — Signal+Background

Mass {Jhy K}[GeVic?] 0150570 05707015702 625 03 035



Hypothesis Testing: The Likelihood Ratio

Experiments typically have background in addition to signal

How do we know if there is a significant signal “on top of”
the background?
Standard technique: Construct pdfs under two hypotheses

» Background only hypothesis
» Signal plus background hypothesis

Ask whether the data are sufficient to distinguish between the
two
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The Neyman-Pearson Lemma

e Suppose we have two hypotheses

» Hy: Background only (Null Hypothesis)
» H;: Signal plus background

o Define o as the probability that we wrongly reject the Null
Hypothesis for a given set of measurements

e We want to define the region W for which we minimize the
probability of wrongly accepting Hy if H; is true

o The region that minimizes the probability of wrongly accepting Hy

is a contour in the likelihood ratio
A(N) = £ Hsip)
L(N|Hg)

e Can define a “p-value” that relates the measured likelihood ratio to
the fraction of the time that Hy would have a likelihood ratio at
least as large as the data.



Example: p-value and Higgs Discovery
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e Local p-value vs mpy
e Dotted line is expected p-value for a SM Higgs with that mass

e Warning: “Look-elsewhere” effect

» When asking how likely something is, must take into account
how many places you looked!



Example: LUX Dark Matter Exclusion Limits
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e Express measurement as contour in space of relevant
parameters (here, 90% c.l.)
e Show expected limit as well as measured one
» If measurement far from expected sensitivity, you should worry

Next 3 slides taken from A. Manalaysays’ talk presenting lates results July 2016



Dark-matter results from 332 new live days of LUX data

Detection technique

* LUX is a dual-phase time projection
chamber (like most other liquid-noble DM
experiments); essentially a cylinder of
LXe.

 Primary scintillation light (“S1”) is emitted

from the interaction vertex, and recorded T
by an array of PMTs on top and bottom. S2
® Electrons emitted from the interaction are
drifted by an applied field to the surface
and into the gas, where they emit |
proportional scintillation light (“52”), also L
recorded by the PMTs. Particle 2l indicates depth
* This design permits: : |
» 3-D localization of each vertex. L S1
» Identification of multiple scatters (via
S2 count).
» ER/NR discrimination (via S2/S1)
» Sensitivity to single ionization — ¥ lonization electrons
5 UV scintillation photons (~175 nm) [N S S———
electrons.

A. Manalaysay | LUX: IDM2016




Dark-matter results from 332 new live days of LUX data

Sanford Underground Research Facility

LUX, located on the 4850 level
(~1.5 km underground) in Lead,
South Dakota. ~107 reduction in , 7y
cosmic muon rate. ;

‘A. Manalaysay | LUX: IDM2016




Dark-matter results from 332 new live days of LUX data

Profile Likelihood Analysis

*Data are compared to models . , I

in an un-binned, 2-sided Ly 4 4 fut
profile-likelihood-ratio (PLR) g e wEET b T
test. s1iw)
*5 un-binned PLR dimensions: & & A
»Spatial: r, ¢, drift-time (raw- Tt e
measured coordinates) o e = ;
é BOE-
»Energy: S1 and log10(S2) fa _,_|=‘='_I:H=__'_—'__‘=I=ﬁ_
¢ ] binned PLR dimension: L
» Event date £
*The data in the upper-half of 8 - —
the ER band were compared '° "’ 2“’ T
to the model (plot at right) to £ _—I_l—\
assess goodness of fit.
A. Manalaysay | LUX: IDM2016
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Systematic Uncertainties

Systematic uncertainties an art rather than a science

Need to estimate how wrong your hypothesis might be due to
» Mis-modeling of detector response (calibration or resolution)
» Variations in conditions (eg temp, pressure)
» Mis-modeling of physics processes (signal or background)

e Such uncertainties aren’t necessarily Gaussian (but we often

assume that they are)

Typically quote them separately from statistical uncertainties



A New Trend: Profiling of Systematic Uncertainties’

e Itemize sources of systematic uncertainty (usually lot’s of
them)

» Often called “nuisance parameters”

o Attempt to write pdf's for how systematic uncertainties affect
the measurement

» Use simulated data to determine pdf as function of quantity
you are measuring

¢ Include these uncertainties in likelihood function
» Usually have to assume Gaussian uncertainties

e "Profiling" is fancy word for including these in the fit
o Idea is to use the data to constrain these parameters

e Powerful but also dangerous



